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Overview

This deck of slides goes through instrumental-variable estimation of
linear models.

The corresponding chapters in Hansen are 12 and 13.
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Example: simultaneity

Temporary deviation from notational conventions to analyze market
model

d = αd − θd p + u

s = αs + θs p + v

where d, s, p are demand, supply, and price, respectively.
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We do not observe supply and demand for any given price.

Collected data is on quantity traded and transaction price, (q, p).
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Data comes from markets in equilibrium.

So, we solve
s = d

for the equilibrium price to get

p = αd − αs

θd + θs
+ u − v

θd + θs
.

This gives traded quantity as

q = αdθs + αsθd

θd + θs
+ θsu + θdv

θd + θs
.

(With E(uv) = 0) the population regression slope of q on p equals

σ2
u

σ2
u + σ2

v

θs − σ2
v

σ2
u + σ2

v

θd,

for σ2
u = E(u2) and σ2

v = E(v2).

Least-squares estimates a weighted average of supply and demand elas-
ticities.
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Focus on the estimation of the demand curve.

Then, collecting equations from above, we have the triangular system

d = αd − θdp + u, p = αd − αs

θd + θs
+ u − v

θd + θs
.

Clearly,

E(pu) = E
(

u

(
u − v

θd + θs

))
= σ2

u

θd + θs
̸= 0,

as the errors in both equations are correlated.

The same happens for the supply curve, as

s = αs + θsp + v, p = αd − αs

θd + θs
+ u − v

θd + θs
.

and
E(pv) = E

(
v

(
u − v

θd + θs

))
= − σ2

v

θd + θs
̸= 0.
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Resolving simultaneity with instrumental variables

Now suppose that

d = αd − θd p + u

s = αs + θs p + γz + v
.

where E(zu) = 0.

Here, z shifts supply (relevance) but not demand (exclusion).

We now have the triangular system of equations

d = αd − θd p + u

p = αd − αs

θd + θs
− γ

θd + θs
z + u − v

θd + θs

.

Further, as cov(u, z) = 0,

cov(d, z) = cov(αd − θd pi + u, z) = −θd cov(p, z),

and so, provided that cov(p, z) ̸= 0, −θd = cov(di,zi)/cov(pi,zi).
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Endogeneity and instrumental variables (H12.2, H12.4 and H12.5)

Interest lies in the parameter vector β in the linear model

Y = X ′β + e,

when
E(Xe) ̸= 0.

Hence, β is not a projection coefficient!

Rather see the equation of interest as a structural relationship.

Linearity is an assumption.
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We will proceed by using instrumental variables Z, which are variables
that satisfy the following two conditions:

Validity: E(Ze) = 0.

Relevance: E(ZX ′) has rank k.

We will also maintain that E(ZZ ′) is invertible, this simply excludes
linearly-dependent instruments.

Note that by setting Z = X this recovers the linear prediction problem
that we have studies so far.

It is useful to rechristen Y1 = Y and to partition

Z =
(

Z1

Z2

)
, X =

(
X1

X2

)
=
(

Z1

Y2

)
,

and then, because, E(Ze) = 0 but E(Xe) ̸= 0 ,

E(Z1e) = 0, E(Z2e) = 0, E(Y2e) ̸= 0
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We refer to Z1 as exogenous regressors and Y2 as endogenous regressors.

Exogenous regressors Z1 can serve as instruments.

Endogenous regressors Y2 cannot, and need to be instrumented for by
Z2.

The relevance condition requires that we need at least one instrument
for each regressor.

We let ℓ = ℓ1 + ℓ2 be the dimension of Z and k = k1 + k2 be the
dimension of X; here k1 = ℓ1.

We need that ℓ2 ≥ k2.
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IV estimand (H13.4-H13.6)

If
Y1 = X ′β + e, E(Ze) = 0, rankE(ZX ′) = k,

then
E[Z(Y1 − X ′β)] = E(ZY1) − E(ZX ′) β = 0.

When ℓ > k we have more equations than unknowns. The problem is
overidentified.

For a k × ℓ matrix A with maximal row rank

AE(ZY1) − AE(ZX ′) β = 0

and so
β = (AE(ZX ′))−1(AE(ZY1)).

When k = ℓ, the problem is just identified. In this case (AE(ZX ′))−1 =
E(ZX ′)−1A−1, and so

β = (E(ZX ′))−1(E(ZY1)),

independent of A. 13/ 30



Alternatively, when ℓ > k, can think about doing least squares on the
linear relationship

E(ZY1) = E(ZX ′)β,

i.e.,

β = arg min
b

(E(ZY1) − E(ZX ′)b)′ (E(ZY1) − E(ZX ′)b)

This has first-order condition

E(XZ ′)[E(ZY1) − E(ZX ′)β] = 0

and solution

β = (E(XZ ′)E(ZX ′))−1(E(XZ ′)E(ZY1)).

Again, when ℓ = k this reduces to β = (E(ZX ′))−1(E(ZY1)).
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Could also do generalized least squares.

For ℓ × ℓ weight matrix W this is

β = arg min
b

(E(Y1Z ′) − b′E(XZ ′)) W (E(ZY1) − E(ZX ′)b) .

The solution is

β = (E(XZ ′) W E(ZX ′))−1(E(XZ ′) W E(ZY1)).

This corresponds to A = E(XZ ′) W .

This GLS formulation is the basis for a class of generalized method of
moment estimators, as a function of the choice of W .
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Simultaneous-equation system and reduced form (H12.7-H12.8)

Let
Y2 = Γ′Z + u2 = Γ′

12Z1 + Γ′
22Z2 + u2

be defined through E(Zu2) = 0, i.e.,

Γ = E(ZZ ′)−1E(ZY ′
2).

This is essentially a population regression of Y2 on Z.

Then we have the system of triangular equations

Y1 = Z ′
1β1 + Y ′

2β2 + e

Y2 = Γ′
12Z1 + Γ′

22Z2 + u2.

Because E(Ze) = 0, we have that E(Y2e) = E(u2e)( ̸= 0), so endogeneity
flows through the projection error u2.
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We can plug-in the projection of Y2 on Z into the structural equation
for Y1 to get

Y1 = X ′β + e

= Z ′
1β1 + Y ′

2β2 + e

= Z ′
1β1 + (Γ′

12Z1 + Γ′
22Z2 + u2)′β2 + e

= Z ′
1(β1 + Γ12β2) + Z ′

2Γ22β2 + (e + u′
2β2)

= λ′Z + u1

for
λ =

(
β1 + Γ12β2

Γ22β2

)
, u1 = e + u′

2β2.
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Can stack the equations

Y1 = λ′Z + u1

Y2 = Γ′Z + u2.

Here E(Zu1) = 0 and E(Zu2) = 0 and, because E(ZZ ′) is invertible,
we can learn λ and Γ from two separate linear (population) projections.

We have

λ =
(

β1 + Γ12β2
Γ22β2

)
=
(

Ik1 Γ12
0 Γ22

) (
β1
β2

)
= Γ̄ β.

This is a set of ℓ equations in k unknowns β. Therefore, provided that
Γ̄ has maximal column rank k,

β = (Γ̄′Γ̄)−1Γ̄′λ

is recoverable.
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Now observe that

Γ̄ =
(

Ik1 Γ12
0 Γ22

)
= E(ZZ ′)−1E(ZX ′),

recalling that X ′ = (Z ′
1, Y ′

2) and Z ′ = (Z ′
1, Z ′

2).

This matrix has rank k iff (by matrix block inversion formula)

rank Γ22 = k2.

Alternatively, as rankE(ZZ ′) = ℓ, we require that

rankE(ZX ′) = k,

which is our relevance condition.

19/ 30



Assumptions (H Assumption 12.2)

In addition to the relevance and validity conditions on the instrumental
variables, assume

1. Random sampling: The variables (Yi, Xi, Zi) are i.i.d.

2. Moments: E(|Y1|4) < ∞, E(∥X∥4) < ∞, E(∥Z∥4) < ∞.

3. Variance: Ω = E(ZZ ′e2) is positive definite.
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Estimator and asymptotic behavior (H12.16 and H13.7)

First let W be a fixed non-random matrix.

Our estimator is

β̂gmm = ((X ′Z)W (Z ′X))−1((X ′Z)W (Z ′Y )).

Clearly, as n → ∞,

Z ′X/n →
p
E(ZX ′) = QZX , Z ′Y /n →

p
E(ZY ),

and so
β̂gmm →

p
β.
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Next, because Y = Xβ + e,
√

n(β̂gmm − β) = ((X ′Z/n)W (Z ′X/n))−1 ((X ′Z/n)W (Z ′e/
√

n)
)

.

From before, we know that, as n → ∞,

√
n(β̂gmm−β) = (Q′

ZXW QZX)−1
(

Q′
ZXW

(
1√
n

n∑
i=1

Ziei

))
+op(1).

Also,
1√
n

n∑
i=1

Ziei →
d

N(0, Ω)

so that, √
n(β̂gmm − β) →

d
N(0, Vβ)

for

Vβ = (Q′
ZXW QZX)−1 (Q′

ZXW ΩW QZX) (Q′
ZXW QZX)−1

.
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Variance estimator (H12.18)

All the limit results go through if we replace W by a Ŵ that satisfies

Ŵ →
p

W

as n → ∞.

Given residuals êi = Yi − X ′
iβ̂gmm we can estimate Ω by

Ω̂ = 1
n

n∑
i=1

ZiZ
′
iê

2
i .

The plug-in estimator of V so constructed is consistent.
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Efficient estimator (H13.10)

The asymptotic variance Vβ is minimized for the choice

Ŵ = Ω̂−1.

In this case,
Vβ =

(
Q′

ZXΩ−1 QZX

)−1
.

The construction of Ω̂ requires residuals, which then require an initial
estimator of β.

This leads to a two-step procedure.
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Homoskedasticity and 2SLS (H12.12 and H13.9)

When E(e|Z = z) = σ2,

Ω = E(ZZ ′e2) = σ2 E(ZZ ′) = σ2 QZZ .

In this case, the efficient estimator uses Ω̂ = s2 Q̂ZZ ∝ Z ′Z, i.e.,

β̂gmm = (Q̂′
ZXQ̂−1

ZZQ̂ZX)−1(Q̂′
ZXQ̂−1

ZZQ̂ZY ).

But note that

Q̂−1
ZZQ̂ZX = (Z ′Z)−1(Z ′X) = ˆ̄Γ,

which is an estimator of Γ̄, and that

Q̂′
ZXQ̂−1

ZZQ̂ZX = Q̂′
ZX

ˆ̄Γ = n−1X ′Z ˆ̄Γ = n−1 ˆ̄Γ′Z ′Z ˆ̄Γ = n−1X ′PZX,

and so

β̂gmm = β̂2sls = (X ′PZX)−1(X ′PZY ) = (ˆ̄Γ′Z ′Z ˆ̄Γ)−1(ˆ̄Γ′Z ′Y )
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This is the two-stage least squares estimator.

Its name comes from the observation that

Y1 = λ′Z + u1 = (β′Γ̄′)Z + u1 = β′(Γ̄′Z) + u1 = (Z ′Γ̄)′β + u1

so that we could estimate β by OLS from a regression of Y1 on Z ′Γ̄ if
Γ̄ was known.

Γ̄ is not known so replaced with its OLS estimator.
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Hypothesis testing with GMM (H12.20-H12.21 and H13.14)

We can proceed by following the Wald principle for inference.

For GMM, as √
nV̂

−1/2
β (β̂gmm − β) →

d
N(0, Ik)

for any continuously-differentiable (vector-valued) function r, θ = r(β)
satisfies √

n (R̂′V̂βR̂)−1/2(θ̂ − θ) →
d

N(0, Iq).

So, testing H0 : θ = θ0 against H1 : θ ̸= θ0 can be done via the Wald
statistic

n (θ̂ − θ0)′(R̂′V̂βR̂)−1(θ̂ − θ0)

in exactly the same manner as before.
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J-statistic (H13.21)

The (infeasible) statistic

e′Z Ω−1Z ′e

n

is asymptotically χ2
ℓ under the null that E(Ze) = 0.

A feasible version of this statistic is

ê′Z Ω̂−1Z ′ê

n
= (Y − Xβ̂gmm)′Z Ω̂−1Z ′(Y − Xβ̂gmm)

n
;

this is the efficient-GMM objective function evaluated at its minimizer.

Under the null it is asymptotically χ2
ℓ−k.

We loose k degrees of freedom due to the estimation of β.

Feasible statistic is exactly zero in the just-identified case!
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Sargan statistic (H12.31)

A special case has homoskedasticity. In this case, we use 2sls and a
variance estimator under homoskedasticity.

Then the J-statistic becomes

1
n

ê′Z ( 1
n Z ′Z)−1Z ′ê

s2 = ê′PZ ê

s2 = (n − k) ê′PZ ê

ê′ê
= (n − k) R2,

where R2 refers to the regression of êi on Zi.

This is Sargan’s statistic.

Large values for the J-statistic suggest that the validity of (at least
some of) the instruments is in doubt.
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Incremental statistic (H13.23)

We can use the same idea to test a subset of the moment conditions.

Prime application is to test whether E(Y2e) = 0.

To do this let J1 be the J-statistic based on E(Ze) = 0. and let J0 be
the J-statistic based on E(Ze) = 0 and E(Y2e) = 0. Then

J0 − J1 →
d

χ2
k2

under the null that E(Y2e) = 0.
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